Month: October 2019

Place field assembly distribution encodes preferred locations

The hippocampus mediates the formation of adaptive memory for positive or negative experiences, but the neurophysiological mechanisms of this learning process remain unknown. The hippocampus may encode locations independently from the stimuli and events that are associated with these locations.

OmniChange: The Sequence Independent Method for Simultaneous Site-Saturation of Five Codons

Directed evolution and rational design are two complementing and often synergistic approaches for tailoring biocatalyst properties to application demands

The Road Not Taken: Could Stress-Specific Mutations Lead to Different Evolutionary Paths?

The evolutionary trajectories of organisms are paved with mutations, which generate the raw material (genetic variation) essential for evolutionary change. In biology class, we learn that mutations are random: the probability that a mutation occurs is independent of its fitness effect (i.e., its impact on individual survival or reproduction). As Luria and Delbruck famously showed [1], bacterial mutations that confer resistance to a virus continually arise in a population before exposure to the virus; under subsequent viral infection, these mutations spread in the population.

Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors

Regenerative medicine aims to repair and replace lost or damaged tissues by initiating the natural regeneration process. Current paradigms in tissue engineering often involve the combination of mesenchymal stem/progenitor cells and the synthesis of novel biomaterials, tailoring physical, chemical and structural properties to mimic crucial aspects of the physiological niche

Ribosome Traffic on mRNAs Maps to Gene Ontology: Genome-wide Quantification of Translation Initiation Rates and Polysome Size Regulation

The expression of genes can be considered as a two-stage process, beginning with transcription and the production of an mRNA, followed by translation of that mRNA into protein by the cell’s ribosome population. Gene expression must be tightly regulated to control protein composition, enabling the cell to rapidly respond to a wide range of environmental conditions. For this reason, cells exert fine control over gene expression, both at the transcriptional, and post-transcriptional level.

Dynactin Subunit p150Glued Is a Neuron-Specific Anti-Catastrophe Factor

Regulation of microtubule dynamics in neurons is critical, as defects in the microtubule-based transport of axonal organelles lead to neurodegenerative disease. The microtubule motor cytoplasmic dynein and its partner complex dynactin drive retrograde transport from the distal axon.

Object segmentation controls image reconstruction from natural scenes

Consider the image in Fig 1A. During the twentieth century, knowledge of how it may be represented in early visual cortex was galvanized by the discovery that neurons respond to specific features defining the image, such as the orientation and size of its edges and lines

The Nuclear Receptor HIZR-1 Uses Zinc as a Ligand to Mediate Homeostasis in Response to High Zinc

Zinc is an essential nutrient for all life, including plants, animals and microbes, because zinc is involved in many different cellular events. Zn2+ binds tightly to many proteins and thereby contributes to their tertiary structure or catalytic activity [1], and Zn2+ has been proposed to function as a second messenger signaling molecule during synaptic transmission, development, and immune responses. Zinc homeostasis is vital for human health.

A Sustainability Plan for the Arctic with a Focus on the Role of Diatoms

Changes over the next 50 years impacting diatoms and their role in Arctic exploration and development are examined. As Arctic ice recedes, the resulting shift in diatom species composition causes a ripple effect changing the food web, and impacting the lifestyle of Arctic people.

Dynamic Response of a Human Neck Replica to Axial-Compression Impact Loading

A human neck replica was made to simulate dynamic response to axial loading, H1. Dynamic loading of neck replica can simulate realistic axial-compression injury to the cervical spine. H2. Severity of measured neck force depends upon impact load and velocity. H3. Neck flexion-extension position affects measured neck force. H4. Simulated neck musculature affects neck stability.

Scroll to top

Send this to a friend