AliceSchnider@sciencebuzz.com'
Alice Schnider



Experience

Content

  • Most Viewed
  • Most Liked

Tab 1

Increasing Efficiency of Preclinical Research By Group Sequential Designs

Group sizes in preclinical research are seldom informed by statistical power considerations but rather are chosen on practicability [1, 2]. Typical sample sizes are small, around n = 8 per group (http://www.dcn.ed.ac.uk/camarades/), and are only sufficient to detect relatively large sizes of effects. Consequently, true positives are often missed (false negatives), and many statistically significant findings are due to chance (false positives).

Tab 2

Increasing Efficiency of Preclinical Research By Group Sequential Designs

Group sizes in preclinical research are seldom informed by statistical power considerations but rather are chosen on practicability [1, 2]. Typical sample sizes are small, around n = 8 per group (http://www.dcn.ed.ac.uk/camarades/), and are only sufficient to detect relatively large sizes of effects. Consequently, true positives are often missed (false negatives), and many statistically significant findings are due to chance (false positives).

ALL ARTICLES

Increasing Efficiency of Preclinical Research By Group Sequential Designs

Group sizes in preclinical research are seldom informed by statistical power considerations but rather are chosen on practicability [1, 2]. Typical sample sizes are small, around n = 8 per group (http://www.dcn.ed.ac.uk/camarades/), and are only sufficient to detect relatively large sizes of effects. Consequently, true positives are often missed (false negatives), and many statistically significant findings are due to chance (false positives).

CONTRIBUTIONS

  • Comments
  • Likes

Tab 3

Tab 4

Tab 5

Reviews
Scroll to top

Send this to a friend