FrancesJiggins@sciencebuzz.com'
Frances Jiggins



Experience

Content

  • Most Viewed
  • Most Liked

Tab 1

The Road Not Taken: Could Stress-Specific Mutations Lead to Different Evolutionary Paths?

The evolutionary trajectories of organisms are paved with mutations, which generate the raw material (genetic variation) essential for evolutionary change. In biology class, we learn that mutations are random: the probability that a mutation occurs is independent of its fitness effect (i.e., its impact on individual survival or reproduction). As Luria and Delbruck famously showed [1], bacterial mutations that confer resistance to a virus continually arise in a population before exposure to the virus; under subsequent viral infection, these mutations spread in the population.

The Spread of Wolbachia through Mosquito Populations

In 2008, 2 groups of researchers independently reported that a bacterial symbiont called Wolbachia made Drosophila resistant to RNA viruses [1,2]. This added to a growing list of symbionts that act as an ‘accessory immune system’, protecting insects against infection. However, both groups realized that the significance of their results went beyond insect immunity and potentially provided a new way to control mosquito-borne viruses.

Tab 2

The Road Not Taken: Could Stress-Specific Mutations Lead to Different Evolutionary Paths?

The evolutionary trajectories of organisms are paved with mutations, which generate the raw material (genetic variation) essential for evolutionary change. In biology class, we learn that mutations are random: the probability that a mutation occurs is independent of its fitness effect (i.e., its impact on individual survival or reproduction). As Luria and Delbruck famously showed [1], bacterial mutations that confer resistance to a virus continually arise in a population before exposure to the virus; under subsequent viral infection, these mutations spread in the population.

The Spread of Wolbachia through Mosquito Populations

In 2008, 2 groups of researchers independently reported that a bacterial symbiont called Wolbachia made Drosophila resistant to RNA viruses [1,2]. This added to a growing list of symbionts that act as an ‘accessory immune system’, protecting insects against infection. However, both groups realized that the significance of their results went beyond insect immunity and potentially provided a new way to control mosquito-borne viruses.

ALL ARTICLES

The Spread of Wolbachia through Mosquito Populations

In 2008, 2 groups of researchers independently reported that a bacterial symbiont called Wolbachia made Drosophila resistant to RNA viruses [1,2]. This added to a growing list of symbionts that act as an ‘accessory immune system’, protecting insects against infection. However, both groups realized that the significance of their results went beyond insect immunity and potentially provided a new way to control mosquito-borne viruses.

The Road Not Taken: Could Stress-Specific Mutations Lead to Different Evolutionary Paths?

The evolutionary trajectories of organisms are paved with mutations, which generate the raw material (genetic variation) essential for evolutionary change. In biology class, we learn that mutations are random: the probability that a mutation occurs is independent of its fitness effect (i.e., its impact on individual survival or reproduction). As Luria and Delbruck famously showed [1], bacterial mutations that confer resistance to a virus continually arise in a population before exposure to the virus; under subsequent viral infection, these mutations spread in the population.

CONTRIBUTIONS

  • Comments
  • Likes

Tab 3

Tab 4

Tab 5

Reviews
Scroll to top

Send this to a friend