RichardMorris@sciencebuzz.com'
Richard Morris



Experience

Content

  • Most Viewed
  • Most Liked

Tab 1

The Yin and Yang of Memory Consolidation: Hippocampal and Neocortical

Memory traces of episodic-like events are encoded in parallel by the hippocampus and neocortex throughout the day, but their retention over time is often transient. Traces subject to consolidation are retained, whereas later memory retrieval is unsuccessful when consolidation fails or is insufficient. Consolidation in both the hippocampus and neocortex is, however, now recognised as a complex set of processes involving both “cellular” mechanisms that operate largely within individual neurons and “systems” mechanisms that include network interactions across brain areas.

Tab 2

The Yin and Yang of Memory Consolidation: Hippocampal and Neocortical

Memory traces of episodic-like events are encoded in parallel by the hippocampus and neocortex throughout the day, but their retention over time is often transient. Traces subject to consolidation are retained, whereas later memory retrieval is unsuccessful when consolidation fails or is insufficient. Consolidation in both the hippocampus and neocortex is, however, now recognised as a complex set of processes involving both “cellular” mechanisms that operate largely within individual neurons and “systems” mechanisms that include network interactions across brain areas.

ALL ARTICLES

The Yin and Yang of Memory Consolidation: Hippocampal and Neocortical

Memory traces of episodic-like events are encoded in parallel by the hippocampus and neocortex throughout the day, but their retention over time is often transient. Traces subject to consolidation are retained, whereas later memory retrieval is unsuccessful when consolidation fails or is insufficient. Consolidation in both the hippocampus and neocortex is, however, now recognised as a complex set of processes involving both “cellular” mechanisms that operate largely within individual neurons and “systems” mechanisms that include network interactions across brain areas.

CONTRIBUTIONS

  • Comments
  • Likes

Tab 3

Tab 4

Tab 5

Reviews
Scroll to top

Send this to a friend