Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors

Regenerative medicine aims to repair and replace lost or damaged tissues by initiating the natural regeneration process. Current paradigms in tissue engineering often involve the combination of mesenchymal stem/progenitor cells and the synthesis of novel biomaterials, tailoring physical, chemical and structural properties to mimic crucial aspects of the physiological niche

Ribosome Traffic on mRNAs Maps to Gene Ontology: Genome-wide Quantification of Translation Initiation Rates and Polysome Size Regulation

The expression of genes can be considered as a two-stage process, beginning with transcription and the production of an mRNA, followed by translation of that mRNA into protein by the cell’s ribosome population. Gene expression must be tightly regulated to control protein composition, enabling the cell to rapidly respond to a wide range of environmental conditions. For this reason, cells exert fine control over gene expression, both at the transcriptional, and post-transcriptional level.

Smartphone-based Ophthalmic Screening for Glaucoma

Lumos can allow patients to quickly screen for glaucoma and detect the disease in its early stages. All the patient needs is a smartphone, and the app will identify the glaucoma risk rapidly and automatically.

Rictor positively regulates B cell receptor signaling by modulating actin reorganization via ezrin

B cell receptor (BCR) signaling is vital for B cell development and function. When BCRs are cross-linked by antigens, it induces the conformational changes of signaling subunits immunoglobulin α chain (Igα) and immunoglobulin β chain (Igβ). The conformational changes of Igα and Igβ lead to the phosphorylation of immunoreceptor tyrosine-based activation motif (ITAM) domains of Igα and Igβ.

Post-MI Cardiac Tissue Engineering

In this study, the author engineers novel gelatin-NIPAM-graphene hydrogels and new, powerful computational tools to enhance precision cardiovascular medicine. Engineering Injectable, Conductive Hydrogels doped with Graphene and Graphene Oxide Nanoparticles for Post-MI Cardiac Tissue Engineering and Robust Drug Discovery: A Computationally-Aided Investigation for Enhancing Therapeutic Efficacy

Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity

Controlling the fate of neural stem cells (NSCs) is a key therapeutic strategy in neuroregenerative medicine. The most promising and direct approach would be to use small molecules to promote the generation of a particular neural lineage, without the need to introduce complex genetic methods.

Superfamily Assignments for the Yeast Proteome through Integration of Structure Prediction with the Gene Ontology

The yeast Saccharomyces cerevisiae is one of the most widely studied organisms, yet a large fraction of its proteins are of unknown structure and/or unknown function. Knowledge of the structure of a protein is critical to understand how it functions, and hence, a complete set of protein structures for yeast is desirable, but difficult to accomplish experimentally.

In Vitro Model of Vascularized Bone: Synergizing Vascular Development and Osteogenesis

In native bone, synergistic interactions between osteoblasts/osteogenic precursors and endothelial cells enable coordinated development of vasculature and mineralized tissue. In the process of intramembranous ossification during craniofacial bone growth, this cell coupling results in close spatial relationships between the two tissues in newly forming bone, with the vascular network serving as a ‘template’ for bone mineral deposition [1]. A synergy between the two cell populations has also been observed during endochondral ossification.

Tensile Properties, Collagen Content, and Crosslinks in Connective Tissues of the Immature Knee Joint

The major connective tissues of the knee joint act in concert during locomotion to provide joint stability, smooth articulation, shock absorption, and distribution of mechanical stresses [1]-[3]. These functions are largely conferred by the intrinsic material properties of the tissues, which are in turn determined by their biochemical compositions

History of Antibiotic Adaptation Influences Microbial Evolutionary Dynamics During Subsequent Treatment

Antibiotic resistance is a growing healthcare concern whereby bacterial infections are increasingly difficult to eradicate due to their ability to survive antibiotic treatments [1]. There have been reported cases of resistance for nearly every antibiotic we have available [2]. Coupled with the fact that the antibiotic discovery pipeline has slowed over the past few decades [3], there is a dire need to find better treatment strategies using existing antibiotics that can slow or even reverse the development of resistance.

Scroll to top

Send this to a friend